
My Weird Prompts

A Voice-to-Podcast Pipeline

Technical Architecture White Paper

Daniel Rosehill

February 2026 — Version 1.0

Pipeline V4 – Chatterbox TTS on Modal

Abstract
My Weird Prompts is a fully automated podcast pipeline that transforms short voice record-
ings into polished, multi-voice podcast episodes. A user records a question or topic on their
phone; within 15–20 minutes a complete episode is published with AI-generated dialogue
between two fictional hosts, original cover art, loudness-normalised audio, show notes, and
an RSS feed entry.

The system is built on a serverless architecture using Modal for GPU compute, Cloudflare
R2 for object storage, Neon PostgreSQL for metadata, and Vercel for static site hosting. At
current scale the pipeline costs approximately $0.33–0.45 per episode in compute.

This document describes the production architecture as of February 2026, including the 12-
stage pipeline, the two-pass editing system, the parallel TTS strategy, the safety and fault
tolerance mechanisms, and the cost model.

Project Links
Website: myweirdprompts.com GitHub: MWP-Backend Recorder:
recorder.myweirdprompts.com

My Weird Prompts — Technical White Paper 2

https://myweirdprompts.com
https://github.com/danielrosehill/MWP-Backend
https://recorder.myweirdprompts.com

Contents

Contents
Abstract . 2
Contents . 3
1 Introduction . 5

1.1 The Concept . 5
1.2 Design Goals . 5
1.3 The Cast . 5

2 System Architecture . 6
2.1 High-Level Flow . 6
2.2 Deployment Topology . 6
2.3 Infrastructure Stack . 6

3 Pipeline Stages . 7
3.1 Stage 1: Audio Ingestion & Validation . 7
3.2 Stage 2: Transcription . 7
3.3 Stage 3: Research Coordination . 7
3.4 Stage 4: Episode Planning . 8
3.5 Stage 5: Script Generation . 8
3.6 Stage 6: Script Review (Pass 1) . 8
3.7 Stage 7: Script Polish (Pass 2) . 9
3.8 Stage 8: Metadata Generation . 9
3.9 Stage 9: Cover Art Generation . 9
3.10 Stage 10: Text-to-Speech (Parallel GPU Workers) . 10

3.10.1 Architecture . 10
3.10.2 Key Optimisations . 10
3.10.3 Quality Choice: Regular vs Turbo . 10
3.10.4 Failure Handling . 10

3.11 Stage 11: Audio Assembly . 10
3.12 Stage 12: Publication & Distribution . 11

4 Safety & Fault Tolerance . 12
4.1 Fail-Open Architecture . 12
4.2 Quality Gates . 12
4.3 Shrinkage Guards . 12
4.4 Recovery Storage . 13
4.5 Zombie Job Prevention . 13
4.6 Notification System . 13

5 Cost Analysis . 14
5.1 Per-Episode Cost Breakdown . 14
5.2 GPU Pricing Reference . 14
5.3 Monthly Cost at Scale . 14

6 Technology Stack . 16
7 Lessons Learned . 17

My Weird Prompts — Technical White Paper 3

7.1 Chatterbox Regular vs Turbo . 17
7.2 Parallel Workers + Cached Conditionals . 17
7.3 The Two-Pass Editing System . 17
7.4 Episode Memory . 18

Appendix: Pipeline Stage Summary . 19

My Weird Prompts — Technical White Paper 4

1 Introduction

1.1 The Concept
My Weird Prompts (MWP) is an experiment in full-stack AI automation: a podcast where every
episode begins with a single voice memo and ends as a published, multi-voice audio show
— with no manual editing in between.

The show features two AI hosts:

• Corn — a relaxed, knowledgeable sloth who leads the conversation
• Herman — an enthusiastic, curious donkey who asks follow-up questions

Prompts are typically submitted by Daniel Rosehill (the show’s producer) via a mobile Pro-
gressive Web App. The pipeline transcribes the prompt, researches the topic, writes a full
dialogue script, generates cover art, synthesises speech with cloned voices, assembles a
broadcast-ready episode, and publishes it to the web and podcast platforms.

1.2 Design Goals
The pipeline was designed around several principles:

1. Zero human editing — every stage is automated, from transcription to publication.
2. Broadcast-quality output — loudness-normalised to EBU R128 (-16 LUFS), with proper

intro/outro, disclaimer, and credits.
3. Fail-open safety — non-critical failures (cover art, polish pass) degrade gracefully rather

than aborting the episode.
4. Cost efficiency — the entire pipeline runs for under $0.50 per episode, using commodity

T4 GPUs and free-tier AI APIs where possible.
5. Full observability — progress tracking, email notifications, job queuing, and recovery

storage for failed episodes.

1.3 The Cast

Character Description

Corn (Host) A laid-back sloth with deep knowledge across topics. Leads con-
versations with measured insight and dry humour.

Herman (Co-host) An energetic donkey who asks the questions listeners are thinking.
Brings enthusiasm and follow-up curiosity.

Daniel (Producer) The human behind the curtain. Submits voice prompts and main-
tains the pipeline. Occasionally acknowledged by the hosts.

My Weird Prompts — Technical White Paper 5

2 System Architecture

2.1 High-Level Flow
The production system consists of four deployed components connected by webhooks and
shared storage:

Recorder PWA → Modal Webhook → Generate Episode

⇓

Cloudflare R2 Neon PostgreSQL Vercel Website

2.2 Deployment Topology

Component Platform URL

Recorder PWA VPS (Docker) recorder.myweirdprompts.com

Pipeline Webhook Modal (serverless) modal.run/…/webhook/gener-
ate

TTS Workers Modal (T4 GPUs) Internal (parallel workers)

Frontend Website Vercel (SSG) myweirdprompts.com

Admin CMS Vercel (Next.js) admin.myweirdprompts.com

Object Storage Cloudflare R2 episodes.myweirdprompts.com

Database Neon PostgreSQL Serverless Postgres

Archival Storage Wasabi S3 EU-Central-2 bucket

2.3 Infrastructure Stack
The pipeline uses exclusively serverless and managed services, with no dedicated servers
beyond the recorder VPS:

• Compute: Modal (serverless containers with GPU scheduling)
• Storage: Cloudflare R2 (S3-compatible, zero egress fees), Wasabi (archival)
• Database: Neon PostgreSQL (serverless, auto-scaling)
• Hosting: Vercel (static site generation from Astro)
• CI/CD: GitHub Actions (auto-deploy on push to main)
• DNS/CDN: Cloudflare (custom domains, caching)

My Weird Prompts — Technical White Paper 6

3 Pipeline Stages
Each episode passes through 12 stages. The full pipeline runs in a single Modal container
(orchestrator) that spawns GPU workers for TTS. Total wall-clock time is typically 15–20
minutes.

1. Audio Ingestion → 2. Transcription → 3. Research → 4. Episode Planning
↓

5. Script Generation → 6. Review (Pass 1) → 7. Polish (Pass 2) →
8. Metadata

↓

9. Cover Art → 10. TTS (Parallel) → 11. Audio Assembly → 12. Publication

3.1 Stage 1: Audio Ingestion & Validation
The pipeline receives an audio URL (typically from the Recorder PWA via Cloudflare R2) and
performs initial validation:

• Download: HTTP GET with 120-second timeout and retry with exponential backoff
• Size check: Files under 1 KB are rejected as invalid
• Format support: MP3, WAV, WebM, OGG, FLAC, AAC, M4A (max 50 MB)

The audio is saved to a Modal shared volume for processing.

3.2 Stage 2: Transcription
The raw audio is transcribed using Google Gemini’s multimodal API (model:
gemini-2.5-flash). Rather than a pure speech-to-text service, Gemini listens to the audio

and produces a cleaned transcript:

• Removes filler words (um, uh, like, you know)
• Eliminates false starts and repetitions
• Preserves core meaning, tone, and intent
• Supports disambiguation hints for technical terms

This multimodal approach captures nuances that pure ASR misses — tone, emphasis, and
context.

3.3 Stage 3: Research Coordination
A lightweight research coordinator (also gemini-2.5-flash) analyses the transcript to deter-
mine if the topic references current events:

• Extracts key topics and entities
• Classifies whether web search is needed
• Generates focused search queries for logging

My Weird Prompts — Technical White Paper 7

Actual web search is deferred to the script generation stage, where Gemini’s Google Search
grounding feature fetches real-time information inline.

3.4 Stage 4: Episode Planning
A dedicated planning agent (gemini-2.5-flash) creates a structured episode outline before
script generation:

• Segment breakdown with specific points to cover
• Key facts and data to incorporate
• Misconceptions to address
• Cross-episode references from the episode memory system
• Tone and pacing guidance

The plan is formatted as a structured prompt section that the script generator follows as a
roadmap. This produces more coherent, well-structured episodes than unguided generation.

The planning agent fails open — if it returns invalid JSON or errors, the pipeline continues
without a plan.

3.5 Stage 5: Script Generation
The core creative step. Uses Gemini 3 Flash Preview (gemini-3-flash-preview) with multi-
modal input:

• Original audio is passed alongside the text prompt, enabling the model to perceive tone,
emphasis, and intent

• Google Search grounding is enabled for real-time fact-checking
• Episode plan provides the structural roadmap
• Episode memory includes the 3 most recent episodes for cross-references
• Date context ensures the model uses the correct current date

The target output is a diarized dialogue script (3,750 words / 25 minutes) in the format:

CORN: [dialogue text]
HERMAN: [dialogue text]

Key parameters: max_tokens=8000 , temperature=0.8 .

Why multimodal? Passing the original audio rather than just the transcript lets the
model pick up on enthusiasm, hesitation, or sarcasm that text transcription flattens. This
produces more contextually appropriate responses.

3.6 Stage 6: Script Review (Pass 1)
The first of two editing passes, using Gemini 3 Flash Preview with Google Search grounding
enabled:

• Fact-checking: Verifies claims against live web sources
• Plan adherence: Ensures all planned segments are covered

My Weird Prompts — Technical White Paper 8

• Depth check: Adds substance where the script is thin
• TTS compliance: Fixes formatting that would confuse text-to-speech

The review agent receives the full script, original transcript, and episode plan. It returns the
edited script as raw text (no JSON wrapping).

Safety mechanisms:
• Shrinkage guard: Rejects edits that reduce the script by more than 20%
• Minimum length: Rejects output under 1,000 characters
• Fail-open: Returns the original script if anything goes wrong

Parameters: temperature=0.4 , max_tokens=10000 .

3.7 Stage 7: Script Polish (Pass 2)
A lighter second pass using Gemini 2.5 Flash (no grounding needed):

• Verbal tic removal: Reduces overuse of “Exactly”, “Absolutely”, “That’s a great point”
• Sign-off cleanup: Ensures no questions or new topics after goodbye
• Flow improvement: Smooths transitions and pacing
• TTS final check: Catches remaining formatting issues

This pass does not change facts or substance — only dialogue naturalness.

Safety mechanisms:
• Shrinkage guard: Rejects output if script shrinks by more than 15%
• Fail-open: Returns the original script on any error

Parameters: temperature=0.3 , max_tokens=10000 .

3.8 Stage 8: Metadata Generation
Uses Gemini 2.5 Flash to generate episode metadata from the final script:

• Title: Concise, engaging episode title
• Slug: URL-safe identifier
• Description: 2–3 sentence summary
• Excerpt: One-line teaser (for social media)
• Tags: Dynamic taxonomy from a registry of canonical tags
• Category/Subcategory: Hierarchical classification
• Image prompt: Description for cover art generation
• Embedding: Semantic vector for similarity search

Tags are generated using a taxonomy-aware system that maintains consistency across
episodes and prevents tag sprawl.

3.9 Stage 9: Cover Art Generation
Uses Fal AI (fal-ai/flux/schnell) to generate a unique cover image:

• Model receives the image prompt from metadata generation
• Generates one cover art variant
• Image uploaded to Cloudflare R2

My Weird Prompts — Technical White Paper 9

Cover art is non-critical — if generation fails, the pipeline continues with a default cover
image (graceful degradation).

3.10 Stage 10: Text-to-Speech (Parallel GPU Workers)
The most compute-intensive stage. Uses Chatterbox TTS (regular, not Turbo) running on
Modal T4 GPUs.

3.10.1 Architecture

Orchestrator (CPU)
Splits segments across workers

↓

Worker 1 (T4 GPU)
 40 segments

Worker 2 (T4 GPU)
 40 segments

↓
Results merged, concatenated with ffmpeg

3.10.2 Key Optimisations
1. Pre-computed voice conditionals: Voice embeddings are computed once and cached in

R2, eliminating 5–10 seconds of processing per segment.

2. Parallel workers: Segments are distributed across 2 GPU workers (configurable). Each
worker loads the model once and processes its entire batch, amortising model loading
cost.

3. Chunk splitting: Long segments (>250 characters) are split at sentence boundaries to
avoid Chatterbox’s 40-second audio output limit.

3.10.3 Quality Choice: Regular vs Turbo
The pipeline uses Chatterbox Regular rather than Chatterbox Turbo, despite Turbo being
faster. Testing showed Regular produces 95% fewer TTS hallucinations (random word
injection, phrase repetition, audio artifacts). For long-form content like podcast episodes,
quality is worth the speed tradeoff.

3.10.4 Failure Handling
• Segments that fail TTS are tracked but don’t abort the episode
• 20% failure threshold: If more than 20% of segments fail, the entire episode is aborted to

prevent short/broken output
• Failed segments produce silence gaps rather than corrupted audio

3.11 Stage 11: Audio Assembly
The final audio is assembled from pre-recorded show elements and generated content:

My Weird Prompts — Technical White Paper 10

Order Component

1 Intro jingle (pre-recorded music)

2 AI-generated disclaimer

3 “Here’s Daniel’s prompt!” announcement

4 Original user prompt audio

5 Whoosh transition sound

6 AI dialogue (Corn & Herman)

7 LLM credit announcement

8 TTS engine credit announcement

9 Outro jingle

Processing pipeline:
1. All components converted to consistent format (44.1 kHz, mono, 16-bit PCM)
2. Concatenated via ffmpeg
3. Single-pass EBU R128 loudness normalisation to −16 LUFS with −1.5 dB true peak
4. Encoded as MP3 at 96 kbps (transparent for speech, 50% smaller than 192k)

3.12 Stage 12: Publication & Distribution
The final stage publishes the episode across multiple systems:

1. Cloudflare R2: Audio file, cover art, transcript PDF, and waveform peaks uploaded
2. Neon PostgreSQL: Episode metadata, tags, category, embedding, and transcript inserted
3. Vercel Deploy Hook: Triggers a rebuild of the Astro static site (with retry logic, up to 3

attempts)
4. Wasabi S3: Full episode backed up to archival storage
5. n8n Webhook: Post-publication webhook triggers downstream syndication (Telegram,

social media)

Quality gates before publication:
• Duration check: Episodes under 10 minutes are rejected (ffprobe validation, with file-size

fallback)
• Script length: Minimum 2,000 words required before TTS
• Segment count: Minimum 10 dialogue segments required

My Weird Prompts — Technical White Paper 11

4 Safety & Fault Tolerance
The pipeline is designed to be resilient to partial failures. Most stages fail open, and critical
failures are caught and reported.

4.1 Fail-Open Architecture
Several pipeline stages are non-critical and degrade gracefully:

Stage On Failure Impact

Episode Planning Continue without plan Less structured script

Research Coordinator Continue without research Relies on model knowledge

Script Review (Pass 1) Use original script No fact-checking pass

Script Polish (Pass 2) Use reviewed script May have verbal tics

Cover Art Use default cover image Generic episode artwork

Waveform Peaks Skip peaks No waveform visualisation

Wasabi Backup Skip archival No off-site backup

Prompt Backup Skip prompt archive Prompt not archived

4.2 Quality Gates
Hard failures that prevent publication:

• Script too short: < 2,000 words (model returned truncated or refused response)
• Too few segments: < 10 dialogue segments (script didn’t match expected format)
• Episode too short: < 10 minutes duration (TTS failure produced short audio)
• TTS failure rate: > 20% of segments failed (systemic TTS problem)
• Audio download failure: File < 1 KB or download timeout > 120s

4.3 Shrinkage Guards
Both editing passes include shrinkage guards to prevent the LLM from accidentally truncating
the script:

• Pass 1 (Review): Rejects output if more than 20% shorter than input
• Pass 2 (Polish): Rejects output if more than 15% shorter than input

This was implemented after early testing showed that review agents sometimes returned
drastically shortened “corrected” scripts.

My Weird Prompts — Technical White Paper 12

4.4 Recovery Storage
If an episode passes all quality gates but fails during publication (R2 upload failure, database
error), the complete episode is saved to a recovery folder in R2:

• All generated files (audio, cover art, script, metadata) are preserved
• Recovery script (pipeline/scripts/recover_episodes.py) can republish failed episodes
• Error notifications are sent via email with recovery path details

4.5 Zombie Job Prevention
A top-level try/except around the entire pipeline ensures that all crashes result in the
job being marked as failed in the database. Before this was implemented, pre-publication
crashes would leave jobs in “running” status indefinitely.

4.6 Notification System
• Generation started: Email sent when script generation begins (includes title)
• Error notification: Email sent on any failure (includes error details and recovery path)
• Job status API: Real-time progress via /status/{job_id} endpoint

My Weird Prompts — Technical White Paper 13

5 Cost Analysis
The pipeline is designed for minimal per-episode cost. All compute runs on serverless infra-
structure with no fixed costs beyond domain registration.

5.1 Per-Episode Cost Breakdown

Service Cost Notes

Modal TTS (2 × T4) ~$0.20 2 workers × 10 min × $0.59/hr

Modal Orchestrator (CPU) ~$0.01 15 min × $0.04/hr

Gemini API (script + edits) ~$0.05 Flash models, free-tier generous

Gemini API (transcription) Minimal Single multimodal call

Fal AI (cover art) ~$0.01 Flux Schnell, single image

Cloudflare R2 Free Free egress, minimal storage

Neon PostgreSQL Free Within free-tier limits

Vercel Free Hobby plan sufficient

Total per Episode ~$0.27–
0.40

Varies with episode length

5.2 GPU Pricing Reference

GPU Per Second Per Hour

T4 (current) $0.000164 ~$0.59

A10G $0.000306 ~$1.10

L4 $0.000222 ~$0.80

A100 (40 GB) $0.001012 ~$3.64

The T4 was chosen as the cheapest GPU that can run Chatterbox Regular in acceptable time.
Upgrading to A10G would roughly halve TTS time but double GPU cost.

5.3 Monthly Cost at Scale
At the current publication rate of approximately 5–10 episodes per week:

• Weekly compute: $1.50–4.00
• Monthly compute: $6–16
• Annual compute: $72–192

My Weird Prompts — Technical White Paper 14

Modal’s Starter plan includes $30/month in free credits, which covers most months entirely.

My Weird Prompts — Technical White Paper 15

6 Technology Stack
Category Service Role

LLM (Script) Gemini 3 Flash Pre-
view

Script generation, review pass (with
Google Search grounding)

LLM (Utility) Gemini 2.5 Flash Transcription, planning, metadata, polish,
tagging, embeddings

TTS Chatterbox Regular Voice-cloned speech synthesis (parallel T4
GPU workers)

Image Generation Fal AI (Flux Schnell) Cover art generation

Compute Modal Serverless GPU containers, job queuing,
parallel workers

Object Storage Cloudflare R2 Audio, images, transcripts, voice condi-
tionals, show elements

Archival Storage Wasabi S3 Long-term episode and prompt backup

Database Neon PostgreSQL Episode metadata, job tracking, tags, em-
beddings

Web Framework Astro Static site generator for podcast website

Web Hosting Vercel Static site hosting with deploy hooks

Admin CMS Next.js Episode management, storage cleanup,
deploy triggers

Recorder FastAPI + Vanilla JS PWA for voice recording and upload

Audio Processing FFmpeg Format conversion, concatenation, loud-
ness normalisation

CI/CD GitHub Actions Auto-deploy pipeline, recorder, and web-
site on push to main

Notifications Resend Email notifications for generation status
and errors

Syndication n8n Post-publication webhook for Telegram
and social media

My Weird Prompts — Technical White Paper 16

7 Lessons Learned

7.1 Chatterbox Regular vs Turbo
When the pipeline first adopted Chatterbox TTS, the Turbo variant was used for speed.
Testing revealed that Turbo produces significantly more hallucinations: random word
injection, phrase repetition, and audio artifacts. Switching to Chatterbox Regular eliminated
approximately 95% of these issues. The occasional hallucination that still occurs with Regular
is minor enough to go unnoticed in a 20–25 minute episode.

Takeaway: For long-form audio content, model quality matters more than speed. A hallu-
cination-free 12-minute TTS pass is better than an 8-minute pass with artifacts scattered
throughout.

7.2 Parallel Workers + Cached Conditionals
Two optimisations reduced TTS time from 36+ minutes to approximately 10 minutes:

1. Pre-computed voice conditionals: Processing voice samples on every segment added
5–10 seconds of overhead each. Pre-computing embeddings once and caching them in
R2 eliminates this entirely.

2. Parallel workers: Instead of processing 80 segments sequentially on one GPU, distributing
them across 2 workers (configurable up to 4) provides near-linear speedup. Each worker
loads the model once and processes its entire batch.

Takeaway: For embarrassingly parallel workloads like segment-level TTS, the overhead of
distributing work across workers is negligible compared to the speedup. Modal’s starmap
API makes this trivially easy.

7.3 The Two-Pass Editing System
The pipeline originally used a single verification agent (Perplexity Sonar via OpenRouter) to
fact-check scripts. This caused a production failure when the agent returned a 169-word
“corrected script” instead of the full 4,000-word script. The pipeline published this truncated
output as an episode.

The replacement two-pass system was designed with specific safeguards:

• Raw output only: Both passes return the complete script as raw text, not wrapped in JSON
(which was causing truncation)

• Shrinkage guards: Automatic rejection if the script shrinks too much
• Fail-open: Both passes return the original script on any error
• Same model family: Using Gemini for both generation and review avoids cross-model

compatibility issues

Takeaway: When an LLM is editing another LLM’s output, explicit length validation is essen-
tial. Agents will sometimes “summarise” instead of “edit” if not carefully constrained.

My Weird Prompts — Technical White Paper 17

7.4 Episode Memory
The pipeline includes an episode memory system that provides context about recent
episodes for cross-referencing. After experimentation, the context window was limited to
only the 3 most recent episodes:

• More episodes led to excessive cross-references that felt forced
• The hosts now direct listeners to search the website for older episodes
• Semantic search finds contextually relevant past episodes (not just chronologically recent

ones)

Takeaway: More context is not always better. A focused, relevant subset produces more
natural references than a comprehensive history.

My Weird Prompts — Technical White Paper 18

Appendix: Pipeline Stage Summary
No. Stage Model / Tool Fail Mode

1 Audio Ingestion HTTP + ffprobe Hard fail

2 Transcription Gemini 2.5 Flash Hard fail

3 Research Gemini 2.5 Flash Fail-open

4 Episode Planning Gemini 2.5 Flash Fail-open

5 Script Generation Gemini 3 Flash Preview Hard fail

6 Review (Pass 1) Gemini 3 Flash Preview +
Grounding

Fail-open

7 Polish (Pass 2) Gemini 2.5 Flash Fail-open

8 Metadata Gemini 2.5 Flash Hard fail

9 Cover Art Fal AI (Flux Schnell) Fail-open

10 TTS Chatterbox Regular (T4 GPU) 20% threshold

11 Audio Assembly FFmpeg Hard fail

12 Publication R2 + Neon + Vercel Recovery storage

My Weird Prompts — Technical White Paper 19

	Abstract
	Contents
	Introduction
	The Concept
	Design Goals
	The Cast

	System Architecture
	High-Level Flow
	Deployment Topology
	Infrastructure Stack

	Pipeline Stages
	Stage 1: Audio Ingestion & Validation
	Stage 2: Transcription
	Stage 3: Research Coordination
	Stage 4: Episode Planning
	Stage 5: Script Generation
	Stage 6: Script Review (Pass 1)
	Stage 7: Script Polish (Pass 2)
	Stage 8: Metadata Generation
	Stage 9: Cover Art Generation
	Stage 10: Text-to-Speech (Parallel GPU Workers)
	Architecture
	Key Optimisations
	Quality Choice: Regular vs Turbo
	Failure Handling

	Stage 11: Audio Assembly
	Stage 12: Publication & Distribution

	Safety & Fault Tolerance
	Fail-Open Architecture
	Quality Gates
	Shrinkage Guards
	Recovery Storage
	Zombie Job Prevention
	Notification System

	Cost Analysis
	Per-Episode Cost Breakdown
	GPU Pricing Reference
	Monthly Cost at Scale

	Technology Stack
	Lessons Learned
	Chatterbox Regular vs Turbo
	Parallel Workers + Cached Conditionals
	The Two-Pass Editing System
	Episode Memory

	Appendix: Pipeline Stage Summary

