My Weird Prompts

A Voice-to-Podcast Pipeline

Technical Architecture White Paper

Daniel Rosehill

February 2026 — Version 1.0

Pipeline V4 — Chatterbox TTS on Modal

Abstract

My Weird Prompts is a fully automated podcast pipeline that transforms short voice record-
ings into polished, multi-voice podcast episodes. A user records a question or topic on their
phone; within 15-20 minutes a complete episode is published with Al-generated dialogue
between two fictional hosts, original cover art, loudness-normalised audio, show notes, and
an RSS feed entry.

The system is built on a serverless architecture using Modal for GPU compute, Cloudflare
R2 for object storage, Neon PostgreSQL for metadata, and Vercel for static site hosting. At
current scale the pipeline costs approximately $0.33-0.45 per episode in compute.

This document describes the production architecture as of February 2026, including the 12-
stage pipeline, the two-pass editing system, the parallel TTS strategy, the safety and fault
tolerance mechanisms, and the cost model.

Project Links
Website: myweirdprompts.com GitHub: MWP-Backend Recorder:
recorder.myweirdprompts.com

My Weird Prompts — Technical White Paper 2

https://myweirdprompts.com
https://github.com/danielrosehill/MWP-Backend
https://recorder.myweirdprompts.com

Contents

Contents
AN 011 = o3 PP 2
(O 0] 01 (=T 01 £ 3
L L1 e T 18 T) 5
T I 7= 077 o - o | 5
1.2 DeSIGN GOQAIS ..ttt et e 5
TR T I T T 7= = 5
2 SYStem ArChI ECIUNE ..ot e e e e e e e e e 6
20 HIgh-LeVvel FIOW ...t e e e e et e e e e e e i iaeanes 6
2.2 Deployment TOPOIOGYttt e e e 6
2.3 Infrastructure StacCKot e 6
I T o1 [T =0 = o T P 7
3.1 Stage T: Audio Ingestion & Validationc.ooiiiiiiiiiiii i 7
3.2 Stage 2: TransCriplioNt 7
3.3 Stage 3: Research Coordinationcooiiiiiiiii it 7
3.4 Stage 4: Episode Planning . ..oueiiniri et i e s 8
3.5 Stage 5: Script Generationoiiii i e e 8
3.6 Stage 6: Script ReVIEW (Pass M) ...ttt 8
3.7 Stage 7: Script Polish (Pass 2)ouiiniii 9
3.8 Stage 8: Metadata Generationo.iiiiiiiii i i it et e 9
3.9 Stage 9: Cover Art Generationon it e 9
3.10 Stage 10: Text-to-Speech (Parallel GPU WOIKers)cccoveieineineinannnnnnnn. 10
3700 ArChIteCtUre ..o e 10
3.70.2 Key Optimisations ...t e e et et e 10
3.10.3 Quality Choice: Regular vS TUIDO ...t 10
310.4 Failure Handlingo .veiii et 10
311 Stage T1: AUdIio ASSEMIDIY ..ttt e i e e e e e e e e 10
3.12 Stage 12: Publication & Distribution ..o e T
4 Safety & FaUlIt TOIEranCe ... e e e et 12
41 Fail-0pen ArChiteCtUre ..ottt e e i et ettt e 12
4.2 QUANTY Galtes .ttt ettt e e 12
G Y o 11 =T [N U = o £ 12
(= To 0 1YL= YA (o] = o [P 13
4.5 Zombie JOb Prevention e 13
4.6 Notification Sy sStemM ... e e 13
S COST ANAIY SIS ettt e 14
51 Per-Episode Cost BreakKdOWNc.oniiiiiit e e 14
5.2 GPU Pricing REfEreNCe ..ot e e e et e 14
5.3 Monthly Costat SCale ...o.iiniii i e e e et e e 14
6 Technology StacK e e e 16
7 LeSSONS LeAIMEA ...ttt et e e e 17

My Weird Prompts — Technical White Paper 3

71 Chatterbox Regular vS TUIDOt e 17

7.2 Parallel Workers + Cached Conditionalsc.couiiiiiiiiiiniiiiiiiiiiiienennn. 17
7.3 The Two-Pass Editing System . ..ot et e e ieaaas 17
2 S = o 1T Yo [N 1Y/ =Y 1 o Y/ 18
Appendix: Pipeling Stage SUMMaAryttt ettt e e 19

My Weird Prompts — Technical White Paper 4

1 Introduction

1.1 The Concept

My Weird Prompts (MWP) is an experiment in full-stack Al automation: a podcast where every
episode begins with a single voice memo and ends as a published, multi-voice audio show
— with no manual editing in between.

The show features two Al hosts:

o Corn — a relaxed, knowledgeable sloth who leads the conversation
o Herman — an enthusiastic, curious donkey who asks follow-up questions

Prompts are typically submitted by Daniel Rosehill (the show’s producer) via a mobile Pro-
gressive Web App. The pipeline transcribes the prompt, researches the topic, writes a full
dialogue script, generates cover art, synthesises speech with cloned voices, assembles a
broadcast-ready episode, and publishes it to the web and podcast platforms.

1.2 Design Goals
The pipeline was designed around several principles:

1. Zero human editing — every stage is automated, from transcription to publication.

2. Broadcast-quality output — loudness-normalised to EBU R128 (-16 LUFS), with proper
intro/outro, disclaimer, and credits.

3. Fail-open safety — non-critical failures (cover art, polish pass) degrade gracefully rather
than aborting the episode.

4. Cost efficiency — the entire pipeline runs for under $0.50 per episode, using commodity
T4 GPUs and free-tier Al APIs where possible.

5. Full observability — progress tracking, email notifications, job queuing, and recovery
storage for failed episodes.

1.3 The Cast

Character Description

Corn (Host) A laid-back sloth with deep knowledge across topics. Leads con-
versations with measured insight and dry humour.

Herman (Co-host) An energetic donkey who asks the questions listeners are thinking.
Brings enthusiasm and follow-up curiosity.

Daniel (Producer) The human behind the curtain. Submits voice prompts and main-
tains the pipeline. Occasionally acknowledged by the hosts.

My Weird Prompts — Technical White Paper 5)

2 System Architecture

2.1 High-Level Flow

The production system consists of four deployed components connected by webhooks and

shared storage:

Recorder PWA N Modal Webhook > Generate Episode
U
Cloudflare R2 Neon PostgreSQL Vercel Website

2.2 Deployment Topology

Recorder PWA

Pipeline Webhook

TTS Workers
Frontend Website
Admin CMS
Object Storage
Database

Archival Storage

VPS (Docker)

Modal (serverless)

Modal (T4 GPUs)
Vercel (SSG)
Vercel (Next.js)
Cloudflare R2
Neon PostgreSQL

Wasabi S3

2.3 Infrastructure Stack

recorder.myweirdprompts.com

modal.run/.../webhook/gener-
ate

Internal (parallel workers)
myweirdprompts.com
admin.myweirdprompts.com
episodes.myweirdprompts.com
Serverless Postgres

EU-Central-2 bucket

The pipeline uses exclusively serverless and managed services, with no dedicated servers
beyond the recorder VPS:

o Compute: Modal (serverless containers with GPU scheduling)
 Storage: Cloudflare R2 (S3-compatible, zero egress fees), Wasabi (archival)

» Database: Neon PostgreSQL (serverless, auto-scaling)
o Hosting: Vercel (static site generation from Astro)

e CI/CD: GitHub Actions (auto-deploy on push to main)

o DNS/CDN: Cloudflare (custom domains, caching)

My Weird Prompts — Technical White Paper

3 Pipeline Stages

Each episode passes through 12 stages. The full pipeline runs in a single Modal container
(orchestrator) that spawns GPU workers for TTS. Total wall-clock time is typically 15-20
minutes.

1. Audio Ingestion N 2. Transcription 99 4. Episode Planning
N2

> 6. Review (Pass 1) > 7. Polish (Pass 2) >
8. Metadata
J

9. Cover Art N 10. TTS (Parallel) > 11. Audio Assembly N 12. Publication

5. Script Generation

3.1 Stage 1: Audio Ingestion & Validation

The pipeline receives an audio URL (typically from the Recorder PWA via Cloudflare R2) and
performs initial validation:

e Download: HTTP GET with 120-second timeout and retry with exponential backoff
o Size check: Files under 1 KB are rejected as invalid
« Format support: MP3, WAV, WebM, OGG, FLAC, AAC, M4A (max 50 MB)

The audio is saved to a Modal shared volume for processing.

3.2 Stage 2: Transcription

The raw audio is transcribed using Google Gemini's multimodal APl (model:
gemini-2.5-flash). Rather than a pure speech-to-text service, Gemini listens to the audio
and produces a cleaned transcript:

e Removes filler words (um, uh, like, you know)

o Eliminates false starts and repetitions

» Preserves core meaning, tone, and intent

e Supports disambiguation hints for technical terms

This multimodal approach captures nuances that pure ASR misses — tone, emphasis, and
context.

3.3 Stage 3: Research Coordination

A lightweight research coordinator (also gemini-2.5-flash) analyses the transcript to deter-
mine if the topic references current events:

o Extracts key topics and entities
 Classifies whether web search is needed
» Generates focused search queries for logging

My Weird Prompts — Technical White Paper 7

Actual web search is deferred to the script generation stage, where Gemini's Google Search
grounding feature fetches real-time information inline.

3.4 Stage 4: Episode Planning

A dedicated planning agent (gemini-2.5-flash) creates a structured episode outline before
script generation:

» Segment breakdown with specific points to cover

o Key facts and data to incorporate

e Misconceptions to address

» Cross-episode references from the episode memory system
» Tone and pacing guidance

The plan is formatted as a structured prompt section that the script generator follows as a
roadmap. This produces more coherent, well-structured episodes than unguided generation.

The planning agent fails open — if it returns invalid JSON or errors, the pipeline continues
without a plan.

3.5 Stage 5: Script Generation

The core creative step. Uses Gemini 3 Flash Preview (gemini-3-flash-preview) with multi-
modal input:

» Original audio is passed alongside the text prompt, enabling the model to perceive tone,
emphasis, and intent

» Google Search grounding is enabled for real-time fact-checking

o Episode plan provides the structural roadmap

» Episode memory includes the 3 most recent episodes for cross-references

o Date context ensures the model uses the correct current date

The target output is a diarized dialogue script (3,750 words / 25 minutes) in the format:

CORN: [dialogue text]
HERMAN: [dialogue text]

Key parameters: max_tokens=8000 , temperature=0.8 .

Why multimodal? Passing the original audio rather than just the transcript lets the
model pick up on enthusiasm, hesitation, or sarcasm that text transcription flattens. This
produces more contextually appropriate responses.

3.6 Stage 6: Script Review (Pass 1)

The first of two editing passes, using Gemini 3 Flash Preview with Google Search grounding
enabled:

» Fact-checking: Verifies claims against live web sources
* Plan adherence: Ensures all planned segments are covered

My Weird Prompts — Technical White Paper 8

o Depth check: Adds substance where the script is thin
o TTS compliance: Fixes formatting that would confuse text-to-speech

The review agent receives the full script, original transcript, and episode plan. It returns the
edited script as raw text (no JSON wrapping).

Safety mechanisms:

o Shrinkage guard: Rejects edits that reduce the script by more than 20%
o Minimum length: Rejects output under 1,000 characters

 Fail-open: Returns the original script if anything goes wrong

Parameters: temperature=0.4, max_tokens=10000 .

3.7 Stage 7: Script Polish (Pass 2)

A lighter second pass using Gemini 2.5 Flash (no grounding needed):

o Verbal tic removal: Reduces overuse of “Exactly”, "Absolutely”, “That's a great point”
 Sign-off cleanup: Ensures no questions or new topics after goodbye

» Flow improvement: Smooths transitions and pacing

TTS final check: Catches remaining formatting issues

This pass does not change facts or substance — only dialogue naturalness.

Safety mechanisms:
» Shrinkage guard: Rejects output if script shrinks by more than 15%
 Fail-open: Returns the original script on any error

Parameters: temperature=0.3, max_tokens=10000 .

3.8 Stage 8: Metadata Generation
Uses Gemini 2.5 Flash to generate episode metadata from the final script:

» Title: Concise, engaging episode title

e Slug: URL-safe identifier

» Description: 2-3 sentence summary

» Excerpt: One-line teaser (for social media)

e Tags: Dynamic taxonomy from a registry of canonical tags
o Category/Subcategory: Hierarchical classification

» Image prompt: Description for cover art generation

o Embedding: Semantic vector for similarity search

Tags are generated using a taxonomy-aware system that maintains consistency across
episodes and prevents tag sprawl.

3.9 Stage 9: Cover Art Generation
Uses Fal Al (fal-ai/flux/schnell) to generate a unique cover image:

» Model receives the image prompt from metadata generation
e Generates one cover art variant
e Image uploaded to Cloudflare R2

My Weird Prompts — Technical White Paper 9

Cover art is non-critical — if generation fails, the pipeline continues with a default cover
image (graceful degradation).

3.10 Stage 10: Text-to-Speech (Parallel GPU Workers)

The most compute-intensive stage. Uses Chatterbox TTS (regular, not Turbo) running on
Modal T4 GPUs.

3.10.1 Architecture

Orchestrator (CPU)
Splits segments across workers
N

Worker 1 (T4 GPU) Worker 2 (T4 GPU)
40 segments 40 segments

N
Results merged, concatenated with ffmpeg

3.10.2 Key Optimisations

1. Pre-computed voice conditionals: Voice embeddings are computed once and cached in
R2, eliminating 510 seconds of processing per segment.

2. Parallel workers: Segments are distributed across 2 GPU workers (configurable). Each
worker loads the model once and processes its entire batch, amortising model loading
cost.

3. Chunk splitting: Long segments (>250 characters) are split at sentence boundaries to
avoid Chatterbox's 40-second audio output limit.

3.10.3 Quality Choice: Regular vs Turbo

The pipeline uses Chatterbox Regular rather than Chatterbox Turbo, despite Turbo being
faster. Testing showed Regular produces 95% fewer TTS hallucinations (random word
injection, phrase repetition, audio artifacts). For long-form content like podcast episodes,
quality is worth the speed tradeoff.

3.10.4 Failure Handling

o Segments that fail TTS are tracked but don't abort the episode

» 20% failure threshold: If more than 20% of segments fail, the entire episode is aborted to
prevent short/broken output

» Failed segments produce silence gaps rather than corrupted audio

3.11 Stage 11: Audio Assembly

The final audio is assembled from pre-recorded show elements and generated content:

My Weird Prompts — Technical White Paper 10

N

1 Intro jingle (pre-recorded music)

2 Al-generated disclaimer

& “Here's Daniel's prompt!” announcement
4 Original user prompt audio

5 Whoosh transition sound

6 Al dialogue (Corn & Herman)

7 LLM credit announcement

8 TTS engine credit announcement

9 Outro jingle

Processing pipeline:

1. All components converted to consistent format (44.1 kHz, mono, 16-bit PCM)

2. Concatenated via ffmpeg

3. Single-pass EBU R128 loudness normalisation to —16 LUFS with —1.5 dB true peak
4. Encoded as MP3 at 96 kbps (transparent for speech, 50% smaller than 192k)

3.12 Stage 12: Publication & Distribution

The final stage publishes the episode across multiple systems:

1. Cloudflare R2: Audio file, cover art, transcript PDF, and waveform peaks uploaded

2. Neon PostgreSQL: Episode metadata, tags, category, embedding, and transcript inserted

3. Vercel Deploy Hook: Triggers a rebuild of the Astro static site (with retry logic, up to 3
attempts)

4. Wasabi S3: Full episode backed up to archival storage

5. n8n Webhook: Post-publication webhook triggers downstream syndication (Telegram,
social media)

Quality gates before publication:

o Duration check: Episodes under 10 minutes are rejected (ffprobe validation, with file-size
fallback)

e Script length: Minimum 2,000 words required before TTS

o Segment count: Minimum 10 dialogue segments required

My Weird Prompts — Technical White Paper 1

4 Safety & Fault Tolerance

The pipeline is designed to be resilient to partial failures. Most stages fail open, and critical
failures are caught and reported.

4.1 Fail-Open Architecture

Several pipeline stages are non-critical and degrade gracefully:

Episode Planning Continue without plan Less structured script
Research Coordinator = Continue without research Relies on model knowledge
Script Review (Pass 1) Use original script No fact-checking pass
Script Polish (Pass 2) Use reviewed script May have verbal tics

Cover Art Use default cover image Generic episode artwork
Waveform Peaks Skip peaks No waveform visualisation
Wasabi Backup Skip archival No off-site backup

Prompt Backup Skip prompt archive Prompt not archived

4.2 Quality Gates
Hard failures that prevent publication:

e Scripttoo short: < 2,000 words (model returned truncated or refused response)
» Too few segments: < 10 dialogue segments (script didn't match expected format)
» Episode too short: < 10 minutes duration (TTS failure produced short audio)

TTS failure rate: > 20% of segments failed (systemic TTS problem)

o Audio download failure: File < 1 KB or download timeout > 120s

4.3 Shrinkage Guards

Both editing passes include shrinkage guards to prevent the LLM from accidentally truncating
the script:

» Pass 1(Review): Rejects output if more than 20% shorter than input
» Pass 2 (Polish): Rejects output if more than 15% shorter than input

This was implemented after early testing showed that review agents sometimes returned
drastically shortened “corrected” scripts.

My Weird Prompts — Technical White Paper 12

4.4 Recovery Storage

If an episode passes all quality gates but fails during publication (R2 upload failure, database
error), the complete episode is saved to a recovery folder in R2:

 All generated files (audio, cover art, script, metadata) are preserved
* Recovery script (pipeline/scripts/recover_episodes.py) can republish failed episodes
e Error notifications are sent via email with recovery path details

4.5 Zombie Job Prevention

A top-level try/except around the entire pipeline ensures that all crashes result in the
job being marked as failed in the database. Before this was implemented, pre-publication
crashes would leave jobs in “running” status indefinitely.

4.6 Notification System

» Generation started: Email sent when script generation begins (includes title)
» Error notification: Email sent on any failure (includes error details and recovery path)
* Job status API: Real-time progress via /status/{job_id} endpoint

My Weird Prompts — Technical White Paper 13

5 Cost Analysis

The pipeline is designed for minimal per-episode cost. All compute runs on serverless infra-
structure with no fixed costs beyond domain registration.

5.1 Per-Episode Cost Breakdown

Coovee e e

Modal TTS (2 x T4) ~$0.20 2 workers x 10 min x $0.59/hr
Modal Orchestrator (CPU) ~$0.01 15 min x $0.04/hr
Gemini API (script + edits) ~$0.05 Flash models, free-tier generous
Gemini API (transcription) Minimal Single multimodal call
Fal Al (cover art) ~$0.01 Flux Schnell, single image
Cloudflare R2 Free Free egress, minimal storage
Neon PostgreSQL Free Within free-tier limits
Vercel Free Hobby plan sufficient
Total per Episode ~$0.27- Varies with episode length

0.40

5.2 GPU Pricing Reference

Cors s e

T4 (current) $0.000164 ~$0.59
A10G $0.000306 ~$1.10

L4 $0.000222 ~$0.80
A100 (40 GB) $0.001012 ~$3.64

The T4 was chosen as the cheapest GPU that can run Chatterbox Regular in acceptable time.
Upgrading to A10G would roughly halve TTS time but double GPU cost.

5.3 Monthly Cost at Scale

At the current publication rate of approximately 5-10 episodes per week:

o Weekly compute: $1.50-4.00
« Monthly compute: $6-16
e Annual compute: $72-192

My Weird Prompts — Technical White Paper 14

Modal’s Starter plan includes $30/month in free credits, which covers most months entirely.

My Weird Prompts — Technical White Paper 15

6 Technology Stack

N

LLM (Script)

LLM (Utility)

TTS

Image Generation

Compute

Object Storage

Archival Storage

Database

Web Framework
Web Hosting

Admin CMS

Recorder

Audio Processing

Cl/CD

Notifications

Syndication

Gemini 3 Flash Pre-
view
Gemini 2.5 Flash

Chatterbox Regular

Fal Al (Flux Schnell)

Modal

Cloudflare R2

Wasabi S3

Neon PostgreSQL

Astro
Vercel

Next.js

FastAPI + Vanilla JS

FFmpeg

GitHub Actions

Resend

n8n

My Weird Prompts — Technical White Paper

Script generation, review pass (with

Google Search grounding)

Transcription, planning, metadata, polish,
tagging, embeddings

Voice-cloned speech synthesis (parallel T4
GPU workers)

Cover art generation

Serverless GPU containers, job queuing,
parallel workers

Audio, images, transcripts, voice condi-
tionals, show elements

Long-term episode and prompt backup

Episode metadata, job tracking, tags, em-
beddings

Static site generator for podcast website
Static site hosting with deploy hooks

Episode management, storage cleanup,
deploy triggers

PWA for voice recording and upload

Format conversion, concatenation, loud-
ness normalisation

Auto-deploy pipeline, recorder, and web-
site on push to main

Email notifications for generation status
and errors

Post-publication webhook for Telegram
and social media

16

7 Lessons Learned

7.1 Chatterbox Regular vs Turbo

When the pipeline first adopted Chatterbox TTS, the Turbo variant was used for speed.
Testing revealed that Turbo produces significantly more hallucinations: random word
injection, phrase repetition, and audio artifacts. Switching to Chatterbox Regular eliminated
approximately 95% of these issues. The occasional hallucination that still occurs with Regular
is minor enough to go unnoticed in a 20-25 minute episode.

Takeaway: For long-form audio content, model quality matters more than speed. A hallu-
cination-free 12-minute TTS pass is better than an 8-minute pass with artifacts scattered
throughout.

7.2 Parallel Workers + Cached Conditionals
Two optimisations reduced TTS time from 36+ minutes to approximately 10 minutes:

1. Pre-computed voice conditionals: Processing voice samples on every segment added
5-10 seconds of overhead each. Pre-computing embeddings once and caching them in
R2 eliminates this entirely.

2. Parallel workers: Instead of processing 80 segments sequentially on one GPU, distributing
them across 2 workers (configurable up to 4) provides near-linear speedup. Each worker
loads the model once and processes its entire batch.

Takeaway: For embarrassingly parallel workloads like segment-level TTS, the overhead of
distributing work across workers is negligible compared to the speedup. Modal's starmap
API makes this trivially easy.

7.3 The Two-Pass Editing System

The pipeline originally used a single verification agent (Perplexity Sonar via OpenRouter) to
fact-check scripts. This caused a production failure when the agent returned a 169-word
“corrected script” instead of the full 4,000-word script. The pipeline published this truncated
output as an episode.

The replacement two-pass system was designed with specific safeguards:

o Raw output only: Both passes return the complete script as raw text, not wrapped in JSON
(which was causing truncation)

» Shrinkage guards: Automatic rejection if the script shrinks too much

 Fail-open: Both passes return the original script on any error

o Same model family: Using Gemini for both generation and review avoids cross-model
compatibility issues

Takeaway: When an LLM is editing another LLM's output, explicit length validation is essen-
tial. Agents will sometimes “summarise” instead of “edit” if not carefully constrained.

My Weird Prompts — Technical White Paper 17

7.4 Episode Memory

The pipeline includes an episode memory system that provides context about recent
episodes for cross-referencing. After experimentation, the context window was limited to
only the 3 most recent episodes:

e More episodes led to excessive cross-references that felt forced
o The hosts now direct listeners to search the website for older episodes

e Semantic search finds contextually relevant past episodes (not just chronologically recent
ones)

Takeaway: More context is not always better. A focused, relevant subset produces more
natural references than a comprehensive history.

My Weird Prompts — Technical White Paper 18

Appendix: Pipeline Stage Summary

Audio Ingestion HTTP + ffprobe Hard fail
2 Transcription Gemini 2.5 Flash Hard fail
3 Research Gemini 2.5 Flash Fail-open
4 Episode Planning Gemini 2.5 Flash Fail-open
5 Script Generation Gemini 3 Flash Preview Hard fail
6 Review (Pass 1) Gemini 3 Flash Preview + Fail-open
Grounding
7 Polish (Pass 2) Gemini 2.5 Flash Fail-open
8 Metadata Gemini 2.5 Flash Hard fail
9 Cover Art Fal Al (Flux Schnell) Fail-open
10 TTS Chatterbox Regular (T4 GPU) 20% threshold
1 Audio Assembly FFmpeg Hard fail
12 Publication R2 + Neon + Vercel Recovery storage

My Weird Prompts — Technical White Paper 19

	Abstract
	Contents
	Introduction
	The Concept
	Design Goals
	The Cast

	System Architecture
	High-Level Flow
	Deployment Topology
	Infrastructure Stack

	Pipeline Stages
	Stage 1: Audio Ingestion & Validation
	Stage 2: Transcription
	Stage 3: Research Coordination
	Stage 4: Episode Planning
	Stage 5: Script Generation
	Stage 6: Script Review (Pass 1)
	Stage 7: Script Polish (Pass 2)
	Stage 8: Metadata Generation
	Stage 9: Cover Art Generation
	Stage 10: Text-to-Speech (Parallel GPU Workers)
	Architecture
	Key Optimisations
	Quality Choice: Regular vs Turbo
	Failure Handling

	Stage 11: Audio Assembly
	Stage 12: Publication & Distribution

	Safety & Fault Tolerance
	Fail-Open Architecture
	Quality Gates
	Shrinkage Guards
	Recovery Storage
	Zombie Job Prevention
	Notification System

	Cost Analysis
	Per-Episode Cost Breakdown
	GPU Pricing Reference
	Monthly Cost at Scale

	Technology Stack
	Lessons Learned
	Chatterbox Regular vs Turbo
	Parallel Workers + Cached Conditionals
	The Two-Pass Editing System
	Episode Memory

	Appendix: Pipeline Stage Summary

